
Master of Science in Informatics at Grenoble
Master Mathématiques Informatique - spécialité Informatique

Graphics, Vision and Robotics

Frame-wise representations of depth
videos for action recognition

Gurkirt Singh
June 20th 2013

Research project performed at INRIA Grenoble

Under the supervision of:
Prof. Radu Horaud, Perception Team

Dr. Georgios Evangelidis, Perception Team

Defended before a jury composed of:
Prof. Remi Ronfard
Prof. James Crowley

Prof. Marie-Christine Fauvet
Dr. Zaid Harchaoui

Dr. Georgios Evangelidis

June 2013

Abstract

We investigate the of problem continuous action recognition from depth im-
ages. Further, we investigate the frame-wise classification as a solution for the
continuous action recognition problem. We present three types of depth data repre-
sentation from depth frames, which are referred as single-reference representation,
multiple-reference representation and no-reference representation. The first two
regard a global translation transformation while the third is a local (region-wise)
similarity transformation of the depth data. These representations directly provide
the descriptors of each depth image. We represent each frame of the video by bag-
of-words (BOW) representation. We show that variation of the visual words over a
temporal window accounts for the motion information which is integrated in each
frame BOW representation, which we encode by temporal smoothing and temporal
differentiation of frame BOW representation. Finally, once we have frame repre-
sentations, standard classifiers such as random forests or support vector machines
are used for frame-wise action classification. We apply a simple voting scheme af-
ter frame-wise classification for isolated action recognition to compare our method
with state-of-the-art methods on isolated recognition and we able to achieve better
performance than state-of-the-art methods.

Acknowledgements
First of all I would like express my deepest appreciation to my supervisor Prof. Radu Horaud,
who offered me to work on this interesting subject and patiently helped me with any problems
and questions that arose during the work on the thesis. I would also like to thanks to Dr.
Georgios Evangelidis for his endless help and support during my internship and reviewing
manuscript in spite of his busy schedule. He made many important suggestions and helped me
to enhance this thesis.

I would also like to thank the members of perception team. Who made my stay pleasant and
helped me with many tricks in implementation. Especially, I would like to thanks Kaustubh for
his inputs into my work.

I also wanted to express my gratitude to my parents for all their encouragement and support
in my studies.

Contents

Abstract i

1 Introduction 1

2 State-of-the-art 5

3 Parts of action recognition system 7
3.1 BOW representation . 7
3.2 Classification . 9

4 Feature representation for action recognition 13
4.1 Single reference representation . 13
4.2 Multi-reference representation . 14
4.3 No-reference representation . 15

5 BOW representation of frames and video 17
5.1 Codebook building . 17
5.2 Frame BOW representation . 17
5.3 Video BOW representation . 19

6 Experiments 21
6.1 Datasets . 21
6.2 Results on CharLearn dataset . 22
6.3 Results on MSR Action3D dataset . 27
6.4 State-of-the-art comparison . 29
6.5 Implementation . 29

7 Conclusion 31

Bibliography 33

iv

Chapter 1

Introduction

In recent years, human activity recognition has become a very active research field in the com-
puter vision area due to its involvement in a variety of real world applications, such as visual
surveillance, behavior analysis, human computer interaction, content based video search, video
indexing and elderly monitoring [9]. Despite the many advances in the related literature, hu-
man action recognition remains a challenging problem, due to the large variation of human
pose, appearance and intra-class variance of actions, i.e. the same action can be performed in
several ways.

Color information was initially used for the action recognition problem [20] [21] [14]. The
availability of depth cameras such as kinect at consumer price led to a new class of recognition
algorithms that deal with depth data only [29] [42] or combine color and depth information [47].
As opposed to color data, the depth information of a scene is texture invariant and describes its
geometric properties that can be exploited to simplify modules such as the foreground segmen-
tation, the human pose description etc. A categorization of the action recognition algorithms
with respect to various parameters has been done in [43].

The majority of the works in the related literature, especially those that deal with depth
data, assumes that a video contains a single action or the action boundaries are a priori known
when a cascade of actions is performed in the video shot. We refer to the classification of such
videos as isolated action recognition. The case of multiple actions becomes very challenging
when no prior information about the boundaries is given, thus the segmentation of the video
into single actions and the classification of each one must be done simultaneously. We refer to
this solution as continuous action recognition.

Obviously, the frame-wise classification provides a solution for the continuous action recog-
nition problem. However, it has been shown that single frames are not very informative and a
couple of frames is required to discriminate actions and compete algorithms that use the whole
set of frames in a video [33]. Moreover, common descriptors that encode the local informa-
tion of frames usually describe data captures from successive frames [21] so that the motion
information is somehow included.

We investigate here the case where the descriptors count on depth data of single frames.
We focus on the frame-wise classification and we investigate the loss in performance compared
to the video-wise classification. As opposed to standard methods [20],[21], [14], the motion
information is late encoded, that is, after describing the frames through a bag-of-words (BOW)
scheme [13]. In other words, it is the variation over time of the quantized data that provides this
kind of information. We investigate three types of depth data representation, which are referred
here as single-reference representation, multiple-reference representation and no-reference rep-

resentation that are discussed in detail in Chapter 4. The first two regard a global translation
transformation while the third is a local (region-wise) similarity transformation of the depth
data. Note that for the single-reference representation color data are also required to extract
a reference point for each frame. A BOW scheme applies in the resulting descriptors which
allows for video- of frame-wise vector representations. In the latter case, the variation of the
visual words over a temporal window accounts for the motion information which is integrated
in each frame BOW representation; this is also discussed in detail in Chapter 5. Finally, once
we have frame or video representations, standard classifiers such as random forests [6] or sup-
port vector machines [10] are tested and compared. Figure 1.1 shows a diagram of our pipeline.
To the best of our knowledge, frame-wise classification of depth video sequences has not been
done before. It is also important to note that the investigation of a frame-wise classification is
worthwhile since any global optimization scheme for the continuous action recognition prob-
lem counts on the discrimination between single frames or short-time sequences [17]. As an
example, a two-pass dynamic programming algorithm can easily apply once each frame is
roughly classified [19].

The state-of-the-art action recognition algorithms that mostly rely on depth data are dis-
cussed in the next chapter. Most of the algorithms follow a standard pipeline that consists in
defining a classifier and appropriately constructing its input; the commonly used input results
from a BOW-based data mapping. The general aspects of these two steps are described in
Chapter 3. In Chapter 6, we evaluate the performance of our schemes with respect to different
parameters using publicly available datasets. Furthermore, we compare our algorithms with
state-of-the-art isolated action recognition methods in chapter 6. Finally, the conclusions of
this work are drawn in the last chapter.

2

Depth Map

Single Reference
 Representation

Multi Reference
Representation

Quad decriptors
Representation

Build Codebook for
each Representation

Frame-wise
Mapping

Video-wise
Mapping

Classification

Data
 Transformation

Quantized Data
Representation

Random forest

SVM

Figure 1.1: Overview of the system

Chapter 2

State-of-the-art

An articulated model of human body could give reliable features to perform action recognition.
But to obtain such a model from intensity images and depth images not a easy task. Much
of the action recognition research using depth cameras is based on the use of human skeleton
joints information provided by the algorithm in [36]. They use simple depth comparison feature
around each pixel over set of offset values. Combining with random forest, it presents one of
the greatest advances in human body pose estimation and expressing it as a set of joints using
depth image. Use of skeleton joints and tracking over time has been exploited for human
action recognition in [41], [42], [46], [45] etc. Wang et al. [41] uses 3D joint positions and
define a local occupancy pattern around each joint based on the depth appearance. In their
later work [42], they argue that pairwise relative positions of joints are more discriminative
features. Also, the local appearance around joints need to be taken into account to capture the
interaction with other objects. On the other hand, Xia et al.[45] uses histogram of 3D joints
location, that characterizes human postures. Yang et al. [46] propose a method to compute
features from joints positions, which contain the information of pose and motion. feature is
based on the position differences of joints. They claims that first 15-20 frames are sufficient
on MSR Action3D dataset [23] to perform action recognition comparable to the one obtained
from whole action video.

Skeleton data is always not reliable especially in case of occlusion. It can have errors, when
person is not directly facing the cameras, which limits the performance of the action recogni-
tion systems based on the skeleton joints. To overcome this problem [29] describe the action
sequence in 4D space (space, depth, time) using the surface normals to the 4D surface. They
describe the action by quantization of the surface normals in to a histogram. They propose
method for non-uniform quantization of the histogram bins to make them more discriminative.
Their description of the sequence preserve the order in frame, to capture the temporal informa-
tion in video. But, their algorithm requires the background removal to extract the 4D surface
normals.

Bag of 3D points has shown promises in [23]. They try to characterize a set of salient pos-
tures and employ an action graph [24] to model the action dynamics. But,the algorithm is tested
on clean dataset. They use the segmented human body and three orthogonal Cartesian planes
are used to project 3D points. They sample the points from the contours of the projections
planes. Novelty of their system is that they only use 1% 3D of all points on human body.

Most of the method available either requires skeleton information or human body segmen-
tation, which may not be available all the time in practice. Other solutions are needed to avoid
this problem. Spatial-temporal interest point feature are widely applied in action recognition

in intensity images [21], [14], [20] etc. Following the work in intensity images on local spatio-
temporal interest points (STIPs), Xia et al. [44] proposed a filtering method to extract STIPs
from depth images. On the top of these extracted point they build a depth cuboid similarity
feature.

Our method does not require skeleton or segmentation of human body. We propose three
frame representations, which intrinsically encode the pose information in a particular frame.
Each frame is represented by bag-of-word scheme and we observe that undesirable background
descriptors appear in every frame of the training data, due to this the inverse document fre-
quency for background words is zero. So background descriptors are removed.

6

Chapter 3

Parts of action recognition system

Action recognition is commonly divided into three parts. 1) feature extraction, 2) bag-of-words
(BOW) representation and 3) classification. The first part regards the extraction of appropriate
features from video which is usually local or global descriptors of color and/or depth data. This
part for our algorithm is described in detail in next chapter. This chapter discusses the BOW
approach in the context of standard image classification framework as well as two commonly
used classification methods.

3.1 BOW representation
Once Cruska et al. [13] proposed bags of keypoints for visual categorization; since then, it has
been successfully applied to many computer vision problems. Sivic et al. in [38] gave new
direction to the field of content-based image retrieval, video retrieval and image classification.
The BOW approach is used for efficient image retrieval while it provides a compact compact
representation of each image i.e., each image is described by a histogram vector of equal length.
The steps involved in computing BOW representation are as follow.

• Feature extraction and descriptor computation

• Image representation using vector quantization

• Histogram weighting

3.1.1 Feature Extraction
Images features are usually extracted from local regions using interest point detectors, such as
Harris corner [16], scale and affine invariant interest point detectors [26] and space time interest
points [14], [21] etc. Descriptors encode the data around each interest point. Depending on the
application in question, the descriptors are computed from appearance histograms of oriented
gradients(HOG), or motion histograms of optical flow (HOF) or combination of appearance
and motion descriptors [40].

3.1.2 Image representation using vector quantization
Descriptors are gathered from whole training data and are put together in a pool. Vector quanti-
zation is done by using unsupervised learning clustering algorithm such as K-means. K-means

applies on this pool and clusters (quantizes) all the descriptors, let (d1, ...di....dn) with di ∈ RN

into K clusters. K-means is a NP -hard problem, but there is a heuristic algorithm [25] that min-
imizes the within clusters sum of squares of distances, which converges to a local optimum so-
lution. After multiple initializations of cluster centers, K-means give a reasonably good quanti-
zation of the descriptors pool. It partitions the n descriptors into K clusters L = {L1, ...Lk...LK},
by solving the following minimization problem

L = argmin
L′

K

∑
k=1

∑
d∈L′k

‖d−µ
(
L′k
)
‖2

where µ
(
L′k
)
∈ RN is the cluster center of L′k.

The above process gives a codebook or vocabulary parametrized by the cluster centers. The
only parameter that has to be tuned is K, which denotes the number of words in the visual
vocabulary. K should be big enough to capture the inter-class variance and small at the same
time to keep the representation compact. Now, given the image descriptors, each image can be
described as a histogram of visual words, where each bin is the index of each visual word.

3.1.3 Histogram weighting

Tf-Idf weighting is helpful to downweight the non discriminative words. In essence it down-
weights the words that appear in too many images. It is shown in experiments that words
corresponding to background are removed by using the weighting scheme. The Tf-Idf weight-
ing score for each histogram element is defined by the product of two scalars which are defined
below, the term frequency and inverse document frequency.

Weighting with tf-idf score: Visual words are weighted on their frequency.
Term frequency (Tf): Normalized frequency of the ith term (word) ti in their jth document
(image) (I j).

t f i j = ni j/
K

∑
k=1

nk j, i = 1,2,K, j = 1,2,J

where ni j is frequency of word ti in image I j
Inverted Document frequency Idf: Total number of documents (images) divided by num-

ber of documents (images) containing the term ti

id f i = log
|J|
|Jti|

where Jti =Card (Iti) and Iti = {I j | ti ∈ I j}
Hence, the tf-idf score is given by

t f − id f i j = t f i j.id f i

Note that the idf score can be computed after the clustering and the construction of the
inverted file, while it is fixed for any test image which is further described.

8

3.2 Classification
Two widely known classification schemes are the random forest and the support vector ma-
chines (SVM). The success of random forest in recent times has increased its popularity. Ap-
plication of random forest classifier in the work of [36] has made great advances in human pose
estimation. SVM is one of most widely used classifier in various problems [34] [13]. In this
section the details of Random forest and SVM classifiers are explained.

3.2.1 Random Forest
Random forest has proven fast and effective multi-class classifier for many problems such as
human pose estimation [36], key point recognition [22], image categorization [37], fast code-
book building [28]. Many other applications are shown in [12]. The random forest classifier is
easy and fast to test. Its natural ability of multi-class classification makes it more powerful. It
build on three basic ideas: 1) first decision trees algorithm by Quinlan [31], 2) Bootstrap Aggre-
gation (Bagging) by Breiman [5] and 3) random selection of a small subset from all attributes
to be tried on each node by Amit et al. [2].

Decision Tree

Classification and regression trees were introduced by Breiman in [4]. The most popular algo-
rithm of decision trees is “C4.5” by Quinlan [31], which is described below. Decision tree is
special type of graph, which has decision nodes and leaf nodes (Class nodes) as shown in figure
3.1.

• Each decision node tests an attribute.

• Each branch corresponds to an attribute value.

• Each leaf node assigns a classification(Class).

The decision attribute on each node is chosen based on the minimization of Shannon en-
tropy and maximization of the information gain based on information theory aspects [35].
Let us assume that we are given set of N training samples S = {s1...si...sN}. Each sample
si = {Xi,Yi} has K attributes (Xi), in our case, the histogram of words and a class label (Yi),
where Xi = {x1....xk...xK} is the histogram. The optimum attribute x∗ is selected according to

x∗ = argmin
x∈τ

∑
S(x)∈(SL,SR)

|S (x)|
|S|

I (S (x))

where τ is the set of values of given attribute x.
I (S (x)) is the Shannon entropy of set S (x) after its division into SL,SR by x. If the set S is

not classified correctly, algorithm recurs on the samples of SL and SR for the left and right child
nodes respectively. Training the the decision tree is most expensive process of training, because
every attribute must be tried on every node and the number of nodes grows exponentially as the
tree’s depth increases. Each leaf node is assigned a prediction probability pl (c) of each class
(c) based on training samples that end up at the particular leaf.

Whereas our classification objective is to minimize the Shannon entropy Icls (S) of S for all
the classes (cls). Shannon entropy for C classes (cls) in sample set S is given by

Figure 3.1: A simple example of Decision tree is shown, which shows the path followed for
decision making. Where decision is made based on binary attributes (is it holiday?, is it sunny?
and do we have enough players to play?). We can see from figure, if day is holiday and sunny
and there are enough player to football then one would play football. Attributes on each node
is chosen, based on its discriminative quality.

Icls (S) =−
C

∑
c=1

p(c | S) log p(c | S)

Given a test sample, it is passed through the tree. It starts at the root node and ends up
at a leaf node. The sample is assigned the prediction probability pl (c) of the leaf node. If
tree is trained to full depth or perfect classification of training data samples, then it overfits the
training data and has high variance on test data. There have been proposed methods to avoid
over-fitting like pruning schemes [27].

Bagging

Given a training set S, a forest of multiple trees is built by using bootstrap sampling. Training
samples for a tree are drawn by uniform sampling with replacement. About one-third of the
cases that are left out of the samples are called out-of-bag (oob) samples. The oob sample is
used to get an unbiased estimate of the classification error as trees are added to the forest. The
oob samples are also used to determine the importance of variables. Trees are trained to full

10

depth without any pruning. Bagging helps to avoid over-fitting by not using all training samples
to train a tree. Instead, multiple trees are built by sub-sampling the training data. Consequently,
sampling brings the stability to decision trees and decreases its variance on test data.

Random sampling of attributes

Though bagging brings stability to decision tree, training of many trees is still expensive, as
every attribute has to be tried on each node to get the best split of samples. Amit et al. [2]
proposed the idea of random sampling of attributes to be tried on every node, which makes this
algorithm more fast. They propose to use the mean of all trees probabilities as the output of
multiple trees.

Breiman in [6] consolidated all the work and injected another randomness by random sam-
pling of training samples for the input of tree training. Final classification is made by combining
the output probabilities pl of each tree as

p(c | s) = 1
T

T

∑
t=1

pl (c)

where T is total number of trees and s is test sample. Class with maximum probability p(c | s)
is chosen as output class.

3.2.2 Support Vector Machine
Support vector machine (SVM) [10] has been widely used for classification in several com-
puter vision applications such as object recognition, human action recognition. A SVM for
binary classification task will take as input a set of vectors and classify each of these vectors as
belonging to one class or another. Given a set of labeled training examples, a binary SVM will
learn a model that will maximize the separation between the two classes. Any new example is
classified as one of the two classes.

Therefore, given N training examples S = {s1...si...sN} SVM will find a hyperplane in a
high-dimensional feature space which will maximize the separation or margin between the two
classes. Each training example is defined as si = {Xi,Yi}, where Yi is the class label and Xi
is the histogram of visual words. This hyperplane for a binary classification is estimated by
optimizing the following problem defined in [10]:

min
w,ζ ,b

{
1
2
‖w‖2 +C

N

∑
i=1

ζi

}
s.t. Yi(wXi−b)≥ 1−ζi,ζi > 0

(3.1)

where w is the weight vector to be estimated which parametrizes the hyperplane; ζ are the slack
variables, for training data points which cannot be correctly classified i.e. are inside the margin
and C is a parameter that controls the trade-off between the slack variables and the margin. The
above problem can be solved by standard quadratic programming techniques.

Classification of human activities is inherently a multi-class problem i.e. the input vectors
Xi has to be classified as one of the C classes Yi ∈ {1, . . . ,c, . . . ,C}. Until now, we explained
the SVM classification as a binary classification problem. In this paragraph we will summarize
multi-class classification with SVMs. A way to perform multi-class classification with SVM is

to reduce the multi-class classification into several binary classification problems. Two of the
reduction methods are one-versus-all strategy and 1 vs 1 strategy. In one-versus-all strategy,
binary classifiers for each class, are build with one class as positive class and the rest as negative
class. The label assigned to an unknown example is of the binary classifier which gives the
highest output or SVM score. In 1 vs 1 strategy an unknown example is assigned a class label
which gets the maximum votes. Cramer etal. [11] cast the multi-class classification into a
single optimization problem instead of dividing it into several binary classification problems.

12

Chapter 4

Feature representation for action recognition

We considered three types of feature representations , which are built from raw 3D points.
These representations directly provides the descriptors of each depth image. we refer to these
representation as :

1. Single-reference representation

2. Multi-reference representation

3. No-reference representation

In the next sections, we present in detail each of these representations.

4.1 Single reference representation

Inspired from [32], a single reference representation is used. Each 3D point in depth frame
reflects a feature point if its depth is greater than zero. The descriptor is relative position to a
reference point. This representation have many advantages, such as it characterizes the actor’s
pose, spatial position of body parts is preserved and it is depth invariant. When clustering is
done then cluster centers corresponds to body parts as shown in Figure 4.1.

Actor’s upper body position is taken as reference point in our case. Upper body is detected
using the robust upper-body detection algorithm of [39], which uses Haar like features on
grayscale images. If the upperbody detection algorithm fails in a frame then previous frame’s
detected position is used. Any other reference point can be used, such as head center or center
of shoulders instead of the upper-body center position.

From the bounding box provided by the upper body detector, the center position of upper
body part can be computed. This position is considered as reference point fr = (xr,yr,zr). As
mentioned 3D points in depth images are considered as feature points if their depth is greater
than zero. If fi =

(
xi,yi,z f

)
is the ith feature point in a depth image, with z being the depth of

the point (xi,yi), then the descriptor of this point is di = (xi− xr,yi− yr,zi− zr).
If a depth image contains n valid features, then the whole set of descriptors can be repre-

sented by a n×3 matrix D as

Figure 4.1: Representation of a frame from a test sequence using the single-reference represen-
tation. It can be seen that cluster centers corresponds to body parts

D =

d1
.
.
di
.
.

dn

=

x1− xr,y1− yr,z1− zr
...
...

xi− xr,yi− yr,zi− zr
...
...

xn− xr,yn− yr,zn− zr

.

Given a visual vocabulary of length K each di is quantized and the matrix is mapped to a
vector in the K-dimensional space.

4.2 Multi-reference representation
A representation of 3D points in depth frame, which does not require detection of any reference
point is proposed. Pairwise relative position of human skeleton joints is used in [42], which
promises more discriminative features. We sample the depth frame by uniformly sampling the
data in both axis of depth image and sampled points are kept as feature points. The relative
position of pairwise features is computed by taking the difference between the positions of the
feature points. Given n feature points the position of the ith feature point fi with respect to the

14

jth feature point f j is computed and produces a new relative feature (descriptor) di j, which is
computed as follows

di j = fi− f j,

where fi = (xi,yi,zi), f j =
(
x j,y j,z j

)
, the coordinates of the two feature points. Hence, di j can

be represented by

di j =
(
x j− x j,yi− y j,zi− z j

)
.

If n feature points are sampled in a depth image then the final number of relative features
is n2. All the relative features can be represented in a n× n cell matrix, with each cell being
a descriptor. But only upper triangular part of the matrix is kept, because lower triangular
points are just the mirror points of upper triangular points and does not add to recognition
performance. Thus, only relative features are kept and stacked into

(
n2−n

2

)
× 3 descriptors

matrix D as shown below.

D =

x1− x2,y1− y2,z1− z2
...
...

x1− xi,y1− yi,z1− zi
...
...

x1− xn,y1− yn,z1− zn
x2− x3,y2− y3,z2− z3

...

...
xi− x j,yi− y j,zi− z j

...

...
xn−1− xn,yn−1− yn,zn−1− zn

where j is always greater than i.
Sampling is the only parameter to be adjusted. It should be dense enough to pick points at

key body parts, like arms, legs, etc, but not too dense to keep the computational complexity of
algorithm to feasible limits on big datasets. Note that computational complexity of the algo-
rithm grows exponentially with the size of the D. We experimentally tried different sampling
factors and their performance is discussed in chapter 6.

4.3 No-reference representation
The previous two representations are based on global translation of all 3D points, so it makes
them depth invariant. To make descriptors locally invariant to similarity transformations a
geometric hashing technique is used from [15] for video synchronization. This technique was
originally presented by an application called astrometry, http://astrometry.net/, where
quadruplets of nearby stars called quads are used for indexing night sky images.

Let us assume that g(x,y) denotes the depth of the pixel (x,y). Using a radius δ , we
consider its four neighborhood (x− δ ,y), (x+ δ ,y), (x,y− δ) and (x,y+ δ). We refer to this

C
y

C

D
y

B(1,1,1)

C
z

D
z

A(0,0,0)
C

x

D

D
x

Figure 4.2: Coordinate system defined by two widely separated points (AB). 3D coordinates
of the points C and D are encoded as descriptor in local coordinate system defined two most
widely separated points A and B.

neighborhood as δ -neighborhood of point (x,y). Together with the depth values g(x−δ ,y),
g(x+δ ,y), g(x,y−δ) and g(x,y+δ), we obtain a quadruple of 3D points.

If we denote A,B,C,D as the δ -neighborhood of a point (x,y) with (A,B) the pair of two
most widely separated points in the quad, we we can consider a local 3D coordinate system
such that A coincides with (0,0,0) and B coincides with (1,1,1). This way we can encode
the relative position of the points C and D with respect to the points A, B as shown in Figure
4.2. Finally, the position of C and D in local coordinate system are kept as six dimensional
dimensional descriptor that is d = (Cx,Cy,Cz,Dx,Dy,Dz), which is shown in figure 4.2.

In other words, a similarity transformation applies to each quadruple defined through the
δ -neighborhood of a feature point. The feature points can be all pixels of a depth frame (ex-
cluding the pixels near the image boundary) or a subset of them after a regular sampling. The
permutation of the points in the quad causes a kind of reflection [15]. To cancel this, given the
pair (AB), we consider the point with the smallest depth value as the origin of local coordinate
system. Moreover, given the pair (CD) we first describe the coordinates the point more close to
the origin. From now on, we refer to this as quad descriptor, or simple quad.

16

Chapter 5

BOW representation of frames and video

Inspired from the success of Bag of words approach in image classification, we describe each
frame by a BOW representation from our frame descriptors. Once frame descriptors are com-
puted, they are put into a BOW framework as described in chapter 3. We recall that d denotes
a feature point descriptor and D denotes all frame descriptors stacked in a matrix. This chapter
is divided into three parts.

1. Codebook building

2. Frame BOW representation

3. Video BOW representation

5.1 Codebook building
The codebook is built using the descriptors of some training frames. If we have N training
frames and Di is the frame descriptors of each training frame, then they are put into one long
array as

DT =

D1
..
Di
..

DN

DT contains all the descriptors from the training frames, which is very big and computational
expensive to be quantized. Therefore, we only use 10% of training descriptors to build the
codebook by randomly sampling the rows of DT . K-means with the Euclidean distance is used
to do the clustering of training descriptors. This scheme provides a codebook, parametrized
by the number of cluster centers (K). K-means is run with multiple initializations of cluster
centers and the one with minimum clustering error provides the cluster centers, which are the
visual words of codebook.

5.2 Frame BOW representation
Frame descriptors are quantized by their projection on the codebook. This way each frame can
be represented by a histogram with K bins, where each element is frequency of the particular

word in the frame. It is weighted using the T f − Id f weighting scheme as described in chapter
3. This way each frame is described by a K-length vector X . The variation of the visual
words over a temporal window accounts for the motion information which is integrated in
each frame BOW representation. Here we describe two methods to capture motion from BOW
representation over a temporal window.

• Temporal smoothing of X

• Temporal differentiation of X

5.2.1 Temporal smoothing of X

To describe the temporal pose information, temporal smoothing is used by using Gaussian filter
of scale σs and size 4σs +1. The representation of a video with M frames can be written as a
K×M array X = {X1,X2, ...Xm, ...XM}. The smoothed vector X s of a frame can be computed
by the following convolution

X s
mk =

2σs

∑
i=−2σs

wiX(m+i)k

where wi’s are weights of the Gaussian filter and k stands for each word. The weights wi’s
of the Gaussian filter are computed as follow

wi =
1√

2πσs
e
− i2

2σs2 , i =−2σs....2σs

Finally, each vector Xm is replaced by its smoothed version.

5.2.2 Temporal differentiation of X

To capture the motion change, the temporal derivative of the BOW representationX can be also
used. Using the same BOW representation of video X = {X1,X2, ...Xm, ...XM}, each vector with
the derivatives X ′ can be computed by

X ′mk =
2σs

∑
i=−2σs

wiX(m+i)k

Where wi’s are weights of Gaussian derivative filter and k stand for each word. The weights
of the Gaussian derivative filter are computed by differentiating the above Gaussian filter

wi =
i√

2πσs3
e
− i2

2σs2 , i =−2σs....2σs

Finally, once X s and X ′ are computed they are normalized by their L1 norm. Optionally,
one can use either vector or concatenate them in a 2K × 1 vector. We test all the cases in
experimental part of the thesis in chapter 6.

Figure 5.1 show all three type of BOW words representations of frames over time in a
video with multiple action classes.

18

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140

−0.1

−0.05

0

0.05

0.1

0.15

Figure 5.1: From top to bottom, frame BOW representation (X) of each frame of a video,
Temporal smoothing of X (X s) and Temporal differentiation of X (X ′) . In all the figure red
doted line corresponds multiple action classes. We can see that different words provides the
discriminative information about each class.

5.3 Video BOW representation
Similar to the frame representation a video can also be represented using a BOW scheme. If
we have M frames in a video, then all frame descriptors are put into long array DV that is,

DV =

D1
..

Dm
..

DM

Each row of the DV array is quantized by its projection on the codebook. So that DV is

transformed to a compact representation of a video. We refer to it as video BOW representation
X of video. Again we normalize X by its L1 norm.

Chapter 6

Experiments

Comparisons are very important in research, putting things side by side can give a perspective.
We compare our method with state-of-the-art methods in the later part of the chapter. Also,
we observe the difference in the performance of the random forest and linear SVM with the
increase of training data.

This chapter is basically divided in two parts, 1) Analysis of our algorithm with different
parameters of each feature representation approach and 2) State of the art comparison on a
publicly available dataset. The outline of the chapter is given below.

1. Datasets

2. Results on CharLearn dataset

3. Results on MSR Action3D dataset

4. Comparison with state-of-the-art methods

5. Implementation details

6.1 Datasets
Our algorithm is evaluated on two datasets, one used for development purposes and the another
one for state-of-the-art comparisons. These datasets are following:

• CharLearn dataset [1]

• MSR Action3D dataset [23]

6.1.1 CharLearn dataset
Part of ChaLearn Gesture Dataset [1] is used for development purposes. Because the whole
dataset is very big (around 50k gestures), we only gathered a small subset (devel04), which
includes 10 gestures performed by a single actor in front of a fixed depth camera (Kinect). This
dataset contains both intensity and depth images aligned and synchronized, so upperbody parts
can be easily detected. It includes 10 hand gestures, such as point straight, stop sign, cross
arm, point right, join hands in front, wave right hand, make fist on right, stop process action,
take fist top to bottom. It contains 47 videos and annotations are provided. A single video may

Action Set1 (AS1) Action Set 2 (AS2) Action Set1 (AS2)
Horizontal arm wave Horizontal arm wave High throw

Hammer hand catch forward kick
Forward punch Draw x side kick

High throw Draw tick jogging
Hand clap Draw circle Tennis swing

Bend Two hand wave Tennis serve
Tennis serve Forward kick Golf swing

pickup & throw side boxing pickup & throw

Table 6.1: The three subsets of actions used in experiments

contain one action or multiple actions (up to 7). Every video starts with an actor standing still
and ends with the same pose, also in between the actions the actor stands still. In order to use
all the videos, instead of just annotating some parts, we add another class stand still. Finally,
we have 153 action sequences and 3127 frames, where each action is about 10-30 frames long.
Each action is performed at least 8 times and at least two of them are kept for training data. We
divide the data in training and test sets in the ratio of 1:4, which means that 31 actions are kept
for training and the rest are used for testing.

6.1.2 MSR Action3D Dataset
MSR-Action3D dataset [23] is an action dataset of depth sequences. This dataset contains
20 actions: horizontal arm wave, horizontal arm wave, hammer, hand catch, forward punch,
high throw, draw x, draw tick, draw circle, hand clap, two hand wave, side-boxing, bend,
forward kick, side kick, jogging, tennis swing, tennis serve, golf swing, pick up and throw. Each
action is performed 2-3 times by ten subjects. The subjects were facing the camera during
the performance. The depth maps were captured at 15 frames per second by a depth camera
(Kinect). The size of the depth map is 640×480. Altogether, the dataset has 23797 frames of
depth maps for the 557 action samples. Each action video is from 35 to 85 frames long and 50
frames long on average.

Dataset is divided into three subsets, each having 8 actions. Table 6.1 lists the three action
subsets used in the experiments. The subsets AS1 and AS2 contain actions with similar move-
ment, and subset AS3 is composed of complex actions. We compare our algorithm with other
state-of-the-art methods by following the same testing conditions as [23], [42], [44], where five
subjects are used for training and other five for testing.

6.2 Results on CharLearn dataset
All the experiments on this dataset are done without removing the background. There is only
one parameter to tune for random forest training, which is the number of trees. It is tuned
using out-of-bag (oob) score as shown in Figure 6.1. We train 45 and 35 trees for frame-wise
classification and isolated action classification respectively. We can see from Figure 6.1 that
even if the number of trees increases after 30, the oob score and test score (accuracy on test
set) remain almost the same. So, even if the number of trees are high, still it does not overfit.

22

0 10 20 30 40 50 60 70 80 90
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of trees

S
co

re
s

%

oob score on tarining data
Score on test data

Figure 6.1: Variation of oob score and test score of frame-wise classification with the increase
of number of trees using single-reference representation on CharLearn dataset. As the trees
added to the forest oob score on training data become steady, we can see in figure that test
score also become steady with oob score. So it means the oob score is unbiased classification
estimate of the training set.

200 400 600 800 1000
10

20

30

40

50

60

70

80

90

100

Number of Words

A
cc

ur
ac

y
%

Accuracy vs Number of words

SVM Frame−wise
RF Frame−wise
SVM Isolated
RF Isolated

Figure 6.2: Performance of random forest (RF) and SVM for frame-wise and isolated classi-
fication with the variation of the number of words by using single-reference representation on
CharLearn dataset

Also, Breiman in [6] claims that random forest does not overfit. Due to randomness involved in
random forest, we run it 10 times and take the mean as final accuracy. Whereas, regularization
constant (C) for linear SVM found by 2-fold cross validation on training data using LIBSVM
[8]. Regularization constant is first searched in logarithmic scale and then uniformly around
the best value of C in the initial cross validation. This process is repeated for all the tests to find
a suitable regularization constant during cross validation.

Another parameter to tune is the window size for temporal derivatives and temporal smooth-
ing of frame-wise BOW representations. However, since the window size is 4σs + 1of frame
where σs is the scale of the Gaussian kernel, we tune this parameter. It is observed that the
scale (σs) equals to 2 for temporal derivatives and equals to 4 for temporal smoothing works

6 7 8 9 10 11 12
60

65

70

75

80

85

90

95

100

Sampling

A
cc

ur
ac

y
%

Accuracy with fixed fixed number of words = 500

SVM Frame−wise
RF Frame−wise
SVM Isolated
RF Isolated

Figure 6.3: Performance of random forest (RF) and SVM for frame-wise and isolated classi-
fication with the variation of sampling. When number of words is fixed for multi-reference
representation on CharLearn dataset.

well on this dataset. We use a vector obtained from the concatenation of temporal derivatives
and temporal smoothing vectors of frame BOW representation of each frame. We make the
comparison of frame representations: temporal derivatives of BOW, temporal smoothing of
BOW and concatenation of both in next section. Now, we present the analysis of all the feature
representation approaches.

1. Analysis of single-reference representation

2. Analysis of multi-reference representation

3. Analysis of no-reference representation

6.2.1 Analysis of single-reference representation
Visual words correspond to body parts as shown in chapter 4. As the number of words increase,
the performance of frame-wise classification and isolated classification also increases as shown
in Figure 6.2. It means that with the increase of number of words, the algorithm is able to
capture the subtle movement of body parts. We can see from Figure 6.2 that frame-wise
classification performance is lower than the isolated classification case, because frame-wise
classification only takes into account the variation of BOW within a small temporal window,
whereas isolated representation of action takes into account all the poses involved in a particular
action. We also observe that most of the frame misclassification occurs on the boundaries of
the actions.

6.2.2 Analysis of multi-reference representation
Sampling is a very crucial parameter to tune in this approach, because the computational com-
plexity increases exponentially with the number of feature points sampled. We experiment with
different sampling factors by varying it from 6 to 12 (factor means that every 6th pixel of depth
map is kept as feature point). So, sampling equal to 6 is more computationally expensive than

24

500 1000 1500 2000
60

65

70

75

80

85

90

95

100

Number of Words

A
cc

ur
ac

y
%

Accuracy with fixed sampling = 8

SVM Frame−wise
RF Frame−wise
SVM Isolated
RF Isolated

Figure 6.4: Performance of random forest (RF) and SVM for frame-wise and isolated classi-
fication with the variation of number of words. When sampling is fixed for multi-reference
representation on CharLearn dataset.

10 12 14 16 18 20
60

65

70

75

80

85

90

95

100

Radius

A
cc

ur
ac

y
%

Accuracy with fixed Number of words = 1000 and Sampling = 3

SVM Frame−wise
RF Frame−wise
SVM Isolated
RF Isolated

Figure 6.5: Performance of random forest (RF) and SVM for frame-wise and isolated classi-
fication with the variation of radius (δ), when sampling and number of words are fixed using
no-reference representation on CharLearn dataset.

the one to 12. We can see from Figure 6.3 that when the sampling increases the performance
decreases, but we also observe that this decrease in performance can be compensated for by the
increase of the number of words, which can be seen from Figures 6.3 and 6.4 for sampling
factor equal to 8.

6.2.3 Analysis of No-reference representation
The only parameter to tune in this approach is the δ -neighborhood. We experiment with dif-
ferent values of radius (δ), which is shown in Figure 6.5. We observe that radius equal to 12
works best for this dataset. We also experimented with uniform sampling of feature points.
As the sampling factor increases the performance remains almost the same as shown in Figure
6.6. We also observe that if the feature points are chosen in a more sophisticated way then we

1 2 3 4 5 6 7
60

65

70

75

80

85

90

95

100

Sampling

A
cc

ur
ac

y
%

Accuracy with fixed Number of words = 1000 and Radius = 12

SVM Frame−wise
RF Frame−wise
SVM Isolated
RF Isolated

Figure 6.6: Performance of random forest (RF) and SVM for frame-wise and isolated classi-
fication with the variation of sampling, when radius (δ) and number of words are fixed using
no-reference representation on CharLearn dataset

Figure 6.7: A depth map from test sequence on the left and in the right image, points with non
zero idf are shown. which shows that points corresponding to the words that appears in all
training images are removed.

do not need to compute quad descriptors for all pixels of the depth image and the performance
may further increase.

We also show that background descriptors are very similar and appear in every frame of
the training dataset, so the inverse document frequency for background words is zero. It is
shown in Figure 6.7, that background descriptors of a test frame are removed, because they are
projected on to the words that appear in all frames of the training data.

It can be seen from the Figures 6.2, 6.4 and 6.5 that single-reference performed best and
then multi-reference approach, same is shown in Table 6.2.

26

Methods SVM Frame-wise SVM Isolated RF frame-wise RF isolated
Single-reference 92.50% 99.12% 89.50% 92.50%
Multi-reference 89.45% 92.30% 90.05% 84.67%

No-reference 87.10% 96.60% 82.09% 75.30%

Table 6.2: Comparison of frame representation approaches on CharLearn dataset.

6.3 Results on MSR Action3D dataset
MSR Action3D dataset contains only depth maps with the background being already removed,
while we have already shown that our algorithm performs well with background in previous
dataset. This dataset is challenging because it contains very similar actions , especially in AS1
and AS2 subsets. We only test multi-reference representation and no-reference representation
on this dataset, because intensity images are not provided for upperbody detection and, more-
over, skeleton joints provided with the dataset are not aligned with depth maps. So we can not
use single-reference representation.

Numbers of trees are tuned similarly to previous dataset as shown in Figure 6.1 by using
oob scores as trees are added to the forest. Regularization constant (C) for the SVM is found by
5-fold cross validation on training data as there are five actors in training set. Each video has
only one action, so, for the isolated action recognition each video is described by a video BOW
representation. We observed that scale (σs) equal to 9 for derivatives and σs equal to 12 for
temporal smoothing works well on the MSR Action3D dataset. Frame-wise approach is also
used to classify each frame. Once each frame is classified, then one can do the voting using
class labels of each frame and chose the class that has maximum number of frames labeled in
a video. We will refer to it as voting scheme. We observe that voting improves the isolated
classification performance, which can be seen in Figures 6.8 and 6.9. Further, this section is
divided into two parts as follows

1. Random forest vs SVM

2. Comparison of different frame BOW representations

6.3.1 Random forest vs SVM
We use concatenated BOW representations of frame to compare the performance of the SVM
and random forest classifier. Same frame BOW representation is used on CharLearn dataset.
We observe from Figure 6.3 and 6.4 that SVM outperforms random forest in both isolated and
frame-wise classification case on CharLearn dataset using multi-reference representation. This
drop in the performance of the random forest is observed in all three frame representations
on CharLearn dataset. On the other hand, random forest outperforms SVM on frame-wise
classification on MSR Action3D dataset, which is shown in Figure 6.8. Whereas, in the case
of isolated action recognition case both random forest and SVM perform very similarly. It is
shown in [7] that random forest works better on low dimensional feature than SVM and SVM
works better when the dimensionality of feature space is large. In our case, the dimensional-
ity of feature space is small but we have very few training examples in CharLearn dataset to
train random trees properly. Thus, these interesting results lead us to believe that linear SVM

200 400 600 800 1000 1200 1400 1600 1800 2000
60

65

70

75

80

85

90

95

100

Number of Words

A
cc

ur
ac

y
%

Accuracy plot with and without voting

SVM Frame−wise
SVM voting with Frame−wise
SVM Isolated
RF Frame−wise
RF voting with Frame−wise
RF Isolated

Figure 6.8: Frame-wise and isolated recognition accuracy with the variation of the number of
words. Both Random forest (RF) and SVM are used. Multi-reference representation used for
sampling factor equal to 10 on MSR action 3D dataset . Random forest out perform SVM
in frame-wise classification. SVM and random forest perform similar in the case of isolated
classification

200 400 600 800 1000 1200 1400 1600 1800 2000
60

65

70

75

80

85

90

95

100

Number of Words

A
cc

ur
ac

y
%

Accuracy plot with and without voting

Frame−wise Both
Frame−wise Temporal Smoothing
Frame−wise Derivatives
Voting Both
Voting Temporal Smoothing
Voting Derivatives
Action BOW Isolated

Figure 6.9: Frame-wise and isolated recognition accuracy with voting and BOW representation
on MSR Action3D dataset, when number of words vary and sampling is fixed (fixed =10).
Random forest is used on multi-reference representation. Temporal smoothing and temporal
derivatives of BOW perform very similar to concatenation of both.

performs better than random forest when training data is small, as our feature space is low di-
mensional so random forest works better than SVM when it has enough training examples in
MSR Action3D dataset.

6.3.2 Comparison of BOW representations
Once temporal smoothing of BOW (X s) and temporal derivatives of BOW (X ′) representation
is obtained, then one can use either vector or concatenate them. It is shown in Figure 6.9, that
X s and X ′ alone performs very similar, but when both concatenated, there is an increment in

28

Test set SVM
Frame-
wise

SVM
Isolated

SVM
with voting

RF
Frame-
wise

RF Iso-
lated

RF with
voting

Li etal
[23]

Xia etal
[45]

AS1 86.26% 90.83% 89.91% 92.75% 90.73% 93.83% 72.90% 87.98%
AS2 78.81% 82.20% 83.10% 82.41% 82.20% 86.29% 71.90% 85.48%
AS3 89.17% 93.83% 95.58% 89.40% 90.09% 92.83% 79.20% 63.46%
Overall 84.75% 88.94% 89.53% 88.16% 87.67% 90.98% 74.70% 78.97%

Table 6.3: Recognition results of multi-reference representation method. In this table we com-
pare with Li etal [23] and Xia etal [45]. Our algorithm outperforms the two methods in all
cases

Test set SVM
Frame-
wise

SVM
Isolated

SVM
with voting

RF
Frame-
wise

RF Iso-
lated

RF with
voting

Li etal
[23]

Xia etal
[45]

AS1 71.25% 81.65% 78.90% 83.08% 73.00% 85.14% 72.90% 87.98%
AS2 68.97% 71.81% 73.64% 68.84% 63.55% 73.55% 71.90% 85.48%
AS3 76.37% 81.42% 81.42% 87.97% 86.81% 89.65% 79.20% 63.46%
Overall 72.19% 78.29% 77.99% 79.96% 79.96% 82.78% 74.7% 78.97%

Table 6.4: Recognition results of no-reference representation method and comparison with Li
etal [23] and Xia etal [45].

performance.

6.4 State-of-the-art comparison
We compare our method with the state-of-the-art methods of Wang etal [42], Li etal [23],
Oreife etal [29], Xia etal [44] and Xia etal [45]. We use concatenated vector of X s and X ′ for
our algorithm as it performs the best.

We can see that our algorithm achieves the highest isolated action recognition accuracy
using voting in Tables 6.3, 6.4 and 6.5. Multi-reference representation performs better than
the state-of-the-art method, which can be seen in Tables 6.3 and 6.5. Whereas no-reference
approach also has comparable results, which can be seen in Tables 6.4 and 6.5.

6.5 Implementation
I implemented an action recognition system according to the methods described in previous
chapters. The system and the experiments were done by combining various programming
languages, Matlab, Python and R [18]. R is used for fast K-means computation, and Python for
random forest classification and upper-body detection. Rest of the work was done in Matlab.
I used the OpenCV [3] function for upperbody detection. Scikit-learn [30] provided me help
with the implementation of random forest. I used LIBSVM [8] for the cross validation as well
as for classification task for linear SVM. However, if the system has to be embedded onto a

Methods Overall accuracy %
Li etal [23] 74.70

Xia etal [45] 78.97
Wang etal [42] 88.20
Oreife etal [29] 88.89

Xia etal [44] 89.30
Multi-reference, RF with voting 90.98

Multi-reference, RF Isolated 87.67
Multi-reference, SVM with voting 89.53

Multi-reference, SVM Isolated 84.75
No-reference, RF with voting 82.78

No-reference, RF Isolated 79.96
No-reference, SVM with voting 77.99

No-reference, SVM Isolated 78.29

Table 6.5: Comparison of state-of-the-art methods with our multi-reference representation and
no-reference representation methods. Multi-reference representation outperforms all the other
methods, when voting is done after the frame-wise classification.

robot, then it would have to be implemented in a low-level programming language such as C
or C++.

30

Chapter 7

Conclusion

We present frame-wise vector representations using BOW scheme build from three types of
feature representations. We show that variation of the visual words over a temporal window
accounts for the motion information which is integrated in each frame BOW representation.
The feature representations are built from raw 3D points. These representations directly pro-
vide the descriptors of each depth image. The novelty of these representations is that they do
not require to detect skeleton model or segmentation of the depth image, which is the bot-
tleneck of the most approaches discussed in the state-of-the-art chapter 2. Moreover, frame
representations intrinsically encodes the human pose information, which highlights the use of
depth camera. We are able to classify almost 85% frames correctly using our multi-reference
representation and almost 80% using no-reference representation on MSR Action3D dataset.
Single-reference representation can be very useful; if one can detect a single reference point on
human body such as face, head, center of shoulder etc.

Frame-wise classification is rich in possibility for extensions. As shown in the experiments,
simple voting scheme after frame-wise classification for isolated action recognition gives better
results than video classification based on video BOW representation. But it is possible to use
any global optimization scheme for simultaneous video segmentation and action recognition
after frame-wise classification. We apply a simple voting scheme after frame-wise classification
for isolated action recognition to compare our method with state-of-the-art methods on isolated
action recognition and we able to achieve better performance than state-of-the-art methods.
We also compared the random forest and SVM on both datasets used in the experimentation.
It is shown in the experiments that random forest performs better, when number of training
examples are high and dimensionality of feature space is low. On the other hand, SVM performs
well even if the number of training samples are low.

Bibliography

[1] Chalearn gesture dataset (cgd2011), chalearn, california, copyright (c) chalearn, 2011.
http://gesture.chalearn.org/.

[2] Yali Amit and Donald Geman. Shape quantization and recognition with randomized trees.
Neural computation, 9(7):1545–1588, 1997.

[3] Gary Bradski. The opencv library. Doctor Dobbs Journal, 25(11):120–126, 2000.

[4] Leo Breiman. Classification and regression trees. Chapman & Hall/CRC, 1984.

[5] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[6] Leo Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[7] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of supervised
learning algorithms. In Proceedings of the 23rd international conference on Machine
learning, pages 161–168. ACM, 2006.

[8] Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27, 2011.

[9] Lulu Chen, Hong Wei, and James M Ferryman. A survey of human motion analysis using
depth imagery. Pattern Recognition Letters, 2013.

[10] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning,
20(3):273–297, 1995.

[11] Koby Crammer and Yoram Singer. On the algorithmic implementation of multiclass
kernel-based vector machines. The Journal of Machine Learning Research, 2:265–292,
2002.

[12] Antonio Criminisi, Jamie Shotton, and Ender Konukoglu. Decision forests: A unified
framework for classification, regression, density estimation, manifold learning and semi-
supervised learning. Foundations and Trends R© in Computer Graphics and Vision, 7(2-
3):81–227, 2011.

[13] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on statistical learning in com-
puter vision, ECCV, volume 1, page 22, 2004.

[14] Piotr Dollar, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recog-
nition via sparse spatio-temporal features. In 2nd Joint IEEE International Workshop
on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, 2005,
pages 65–72.

[15] G Evangelidis and Christian Bauckhage. Efficient subframe video alignment using short
descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2013.

[16] Chris Harris and Mike Stephens. A combined corner and edge detector. In Alvey vision
conference, volume 15, page 50. Manchester, UK, 1988.

[17] Minh Hoai, Zhen-Zhong Lan, and Fernando De la Torre. Joint segmentation and classi-
fication of human actions in video. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3265–3272, 2011.

[18] Ross Ihaka and Robert Gentleman. R: A language for data analysis and graphics. Journal
of computational and graphical statistics, 5(3):299–314, 1996.

[19] J. Cech K. Kulkarni, G. Evangelidis and R. Horaud. Continous action recognition based
on dynamic programming. Submitted to International Journal of Computer Vision.

[20] Alexander Klaser and Marcin Marszalek. A spatio-temporal descriptor based on 3d-
gradients. In IN 19th British Machine Vision Conference, Sep 2008, volume 275, pages
1–10, 2008.

[21] Ivan Laptev. On space-time interest points. International Journal of Computer Vision,
64(2-3):107–123, 2005.

[22] Vincent Lepetit, Pascal Lagger, and Pascal Fua. Randomized trees for real-time keypoint
recognition. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2005, volume 2, pages 775–781.

[23] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Action recognition based on a bag
of 3d points. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2010, pages 9–14.

[24] Wanqing Li, Zhengyou Zhang, and Zicheng Liu. Expandable data-driven graphical mod-
eling of human actions based on salient postures. Circuits and Systems for Video Technol-
ogy, IEEE Transactions on, 18(11):1499–1510, 2008.

[25] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, page 14. California, USA, 1967.

[26] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point detec-
tors. International journal of computer vision, 60(1):63–86, 2004.

[27] John Mingers. An empirical comparison of pruning methods for decision tree induction.
Machine learning, 4(2):227–243, 1989.

34

[28] Frank Moosmann, Bill Triggs, Frederic Jurie, et al. Fast discriminative visual codebooks
using randomized clustering forests. Advances in Neural Information Processing Systems
19, pages 985–992, 2007.

[29] Omar Oreifej and Zicheng Liu. Hon4d: Histogram of oriented 4d normals for activity
recognition from depth sequences. In Proceedings of the 24th IEEE Conference on, Com-
puter Vision and Pattern Recognition (CVPR), 2013.

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[31] John Ross Quinlan. C4.5: programs for machine learning, volume 1. Morgan kaufmann,
1993.

[32] Jordi Sanchez-Riera, Jan Cech, and Radu P. Horaud. Action recognition robust to back-
ground clutter by using stereo vision. In The Fourth International Workshop on Video
Event Categorization, Tagging and Retrieval, LNCS. Springer, October 2012.

[33] Konrad Schindler and Luc Van Gool. Action snippets: How many frames does human
action recognition require? In Computer Vision and Pattern Recognition, 2008. CVPR
2008, pages 1–8.

[34] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local
svm approach. In Proceedings of the 17th International Conference on Pattern Recogni-
tion, ICPR, 2004, volume 3, pages 32–36. IEEE.

[35] Claude Elwood Shannon. A mathematical theory of communication. American Telephone
and Telegraph Company, 1948.

[36] Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard
Moore, Alex Kipman, and Andrew Blake. Real-time human pose recognition in parts
from single depth images. CVPR, 2:3, 2011.

[37] Jamie Shotton, Matthew Johnson, and Roberto Cipolla. Semantic texton forests for image
categorization and segmentation. In IEEE Conference on Computer Vision and Pattern
Recognition, 2008. CVPR 2008., pages 1–8.

[38] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object
matching in videos. In In Proceedings of Ninth IEEE International Conference on Com-
puter Vision, 2003., pages 1470–1477, 2003.

[39] Paul Viola and Michael J Jones. Robust real-time face detection. International journal of
computer vision, 57(2):137–154, 2004.

[40] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, Cordelia
Schmid, et al. Evaluation of local spatio-temporal features for action recognition. 2009.

[41] Jiang Wang, Zicheng Liu, Jan Chorowski, Zhuoyuan Chen, and Ying Wu. Robust 3d
action recognition with random occupancy patterns. In Computer Vision–ECCV 2012,
pages 872–885. Springer, 2012.

[42] Jiang Wang, Zicheng Liu, Ying Wu, and Junsong Yuan. Mining actionlet ensemble for
action recognition with depth cameras. In Computer Vision and Pattern Recognition
(CVPR), pages 1290–1297. IEEE, 2012.

[43] Daniel Weinland, Remi Ronfard, and Edmond Boyer. A survey of vision-based methods
for action representation, segmentation and recognition. Computer Vision and Image
Understanding, 115(2):224–241, 2011.

[44] Lu Xia and JK Aggarwal. Spatio-temporal depth cuboid similarity feature for activity
recognition using depth camera. In Proceedings of the 24th IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), Portland, Oregon, 2013.

[45] Lu Xia, Chia-Chih Chen, and JK Aggarwal. View invariant human action recognition
using histograms of 3d joints. In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 20–27, 2012.

[46] Xiaodong Yang and YingLi Tian. Eigenjoints-based action recognition using naive-bayes-
nearest-neighbor. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2012, pages 14–19, 2012.

[47] Hao Zhang and Lynne E Parker. 4-dimensional local spatio-temporal features for human
activity recognition. In Intelligent Robots and Systems (IROS),, pages 2044–2049. IEEE,
2011.

36

