

Predicting Action Tubes

Gurkirt Singh Suman Saha Fabio Cuzzolin

Visual Artificial Intelligence Laboratory (VAIL), Oxford Brookes University

EuropeanHorizon 2020EuropeanEuropean Union fundingCommissionfor Research & Innovation

The task is to determine/predict what action is occurring in a video, as early as possible using the observed part of the video, localise it (in red above), and predict its future locations (in blue above).

- > Action Tube Localisation: a set of linked bounding boxes covering each individual action instance.
- Online: the action tube should be constructed incrementally.
- > Label Prediction: to predict the label of the action tube at any given point in time.
- > Location Prediction: to predict the future locations of the action tube at any given point in time.

Why?

- Real-time online action localisation and future prediction are essential for many applications, e.g. surveillance, human-robot interaction, autonomous driving, robotic surgery etc.
- > Future location prediction is essential to design reactive system, e.g. autonomous driving, robotic surgery.

Contributions

- Unlike other action label prediction [1,2], or trajectory prediction methods [3,4], for the first time, we solve the action prediction and future location prediction problem simultaneously and incrementally;
- > Training a network to make predictions also helps improv action detection performance;
- We demonstrate that the feature-based fusion of optical flow [5] based feature with appearance based features works better than late fusion in the context of action detection.

Fused Features

- > Action micro-tube detection based on two frames separated by Δ frames, Saha *et al.* [7].
- The Linking of micro-tubes to create whole action-tube is based on Singh *et al* [6]

Results: Action detection on JHMDB-21

Action Micro-tubes and Action Detection

Method $\$ threshold δ	0.2	0.5	0.75	0.5:0.95	Accuracy %
Online-SSD Singh <i>et al.</i> [6]	73.8	72.0	44.5	41.6	
AMTnet Saha <i>et al.</i> [7] rgb-only	57.7	55.3			
ACT Kalegoton <i>et al.</i> [8]	74.2	737	52.1	44.8	61.7
T-CNN Hou <i>et al.</i> [9]	78.4	76.9			67.2
AMTnet-LateFusion	71.7	71.2	49.7	42.5	65.8
AMTnet-FeatFusion-Concat	73.1	72.6	59.8	48.3	68.4
AMTnet-FeatFusion-Sum	73.5	72.8	59.7	48.1	69.6
Ours TPnet – 053	72.6	71.2	58.0	46.7	67.5
Ours TPnet – 453	73.8	73.0	59.1	47.3	68.4
Ours TPnet – 051	74.6	73.1	60.5	49.0	69.8
Ours TPnet – 451	74.8	74.1	61.3	49.1	68.9

Results: Future location prediction

*TPnet*_{*abc*} represents our TPnet, where $a = \Delta p$, $b = \Delta f$ and c = n.

References

[1] Y. Kong et al., Deep sequential context networks for action prediction CVPR 2016. [2] M.S. Ryoo Humanactivityprediction:Earlyrecognitionofongoingactivitiesfromstreaming videos, ICCV 2011. [3] K.M. Kitani, Activity forecasting, ECCV 2012.
[4] A. Alahi, Social Istm: Human trajectory prediction in crowded spaces, CVPR 2016. [5] T. Brox, et al, High accuracy optical flow estimation based on a theory for warping, ECCV, 2004.
[6] G. Singh, et al, Online Real-time Multiple Spatiotemporal Action Localisation and Prediction, ICCV 2017. [7] S. Saha et al. AMTnet : Action-micro-tube regression by end-to-end trainable deep architecture, ICCV 2017.
[8] V. Kalogeiton et al., Action tubelet detector for spatiotemporal action localization ICCV2017 [9] R. Hou, Tube convolutional neural network (t-cnn) for action detection in videos, ICCV 2017.

Results: Action label prediction and online action detection

-X-AMTnet

─── TPnet₀₅₁

100