OXFORD UNIVERSITY

Online Real-time Multiple Spatiotemporal Action Localisation and Prediction Gurkirt Singh¹ Suman Saha¹ Michael Sapienza^{2*} Philip Torr² Fabio Cuzzolin¹ ¹Oxford Brookes University ²University of Oxford

Online Action Localisation and Prediction

Task is to determine what action is occurring in a video, as early as possible and localise it.

- > Action Localisation: defined as a set of linked bounding boxes covering each individual action instance, called action tubes.
- **Online:** method designed to construct tubes incrementally.
- **Prediction:** to predict the label of the video at any given point of time, for e.g. when only 10% of the video has been observed.

Why?

- Real-time online action localisation is essential for many applications, for e.g. surveillance, human-robot interaction.
- Early action label prediction is crucial in interventional applications, for e.g. surgical robotics or autonomous driving.

Contributions

- \blacktriangleright Unlike previous methods [1,2,3], we construct multiple action tubes simultaneously and incrementally, getting rid of recursive calls to dynamic programming to generate multiple tubes.
- Slow optical flow [5] and the Faster RCNN detection network are replaced by real-time optical flow [6] and SSD [7] for speed.
- First method to perform online spatiotemporal action localisation in real-time, while still outperforming previous methods.
- Unlike [4], we perform early action localisation and prediction in **untrimmed** videos of the UCF101 dataset.

Early label prediction

- Early label prediction is a side product of our online tube generation algorithm.
- At any given point of time the video is assigned the label of the tube with highest score from the current set of tubes.

Step-4: Update temporal labelling of each tube using the new added box, by using a temporal label changing cost as shown by [8].

tube index: 2 tube id: 1

Frame t-1

Frame t

Step-5: Terminate tubes based on the labeling or if no match is found for the tube in the past k frames.

Step-6: Initialise new tubes using unassigned detections.

tube index: 2

tube id: 1 Score: 0.6

Frame 2

0.6

Frame 1

Score: 0.6

 \blacktriangleright We used n = 10, $\lambda = 0.1$ and k = 5 in all of our experiments

Results

JHMDB-21 A + AF 🗧 – UCF101-24 A + RTF – 🍋 JHMDB-21 A + RTF Video observation percentage (%)

Early Label Prediction

Video observation percentage

Spatiotemporal localisation results on UCF101*

	Method $\$ threshold δ	0.2	0.5	0.75	0.5:0
Faster RCNN	Peng et al. [5]	73.5	32.1	02.7	07.3
	Saha et al. [6]	66.6	36.4	07.9	14.4
SSD	Appearance (A) (Fastest)	69.8	40.9	15.5	18.
	Real-time flow (RTF)	42.5	13.9	00.5	03.
	Accurate Flow (AF)	63.7	30.8	02.8	11.0
	A + RTF(union-set) (Real-time & SOTA)	70.2	43.0	14.5	19.2
	A + AF (boost-fusion)	73.0	44.0	14.1	19.2
	A + AF (union-set) (<mark>Our best</mark>)	73.5	46.3	15.0	20.4
	A + AF (union-set) Saha et. al.[6]	71.7	43.3	13.2	18.0

* All the result are shown on revised spatiotemporal annotations, corrected manually by authors

Real-time analysis

Modules \\ Setup	А	A+RTF	A+AF	[6]
Flow computation time (ms)		07.0	110	110
Detection network time (ms)	21.8	21.8	21.8	145
Tube generation time (ms)	02.5	03.0	03.0	10.0
Overall speed (fps)	40.0	28.0	07.0	03.3

References

[1] G. Gkioxari, and J. Malik, Finding action tubes, CVPR, 2015.

[2] X. Peng and C. Schmid. Multi-region two-stream R-CNN for action detection", ECCV, 2016.

[3] S. Saha, et al, Deep learning for detecting multiple space-time action tubes in videos, BMVC 2016.

[4] K. Soomro, et al, Predicting the where and what of actors and actions through online action localization, CVPR, 2016. [5] T. Brox, et al, High accuracy optical flow estimation based on a theory for warping, ECCV, 2004.

[6] T. Kroeger, et al, Fast optical flow using dense inverse search, ECCV, 2016.

[7] W. Liu, et al, SSD: Single shot multibox detector, ECCV, 2016.

[8] G. Evangelidis et al, Continuous gesture recognition from articulated poses", ECCVW, 2014.

Code: https://github.com/gurkirt/realtime-action-detection Paper: https://arxiv.org/pdf/1611.08563.pdf

Email: Gurkirt.Singh-2015@brookes.ac.uk

Paper

Code

Revised annotations: https://github.com/gurkirt/corrected-UCF101-Annots

